Methodenvielfalt in Chemieübungsstunden

Je nach Ziel bieten sich folgende mögliche Konzeptionen an:

- 1. Nacharbeiten einer Versuchsvorschrift
- 2. Anwendungsorientiertes Arbeiten
- 3. Problemlösendes Experimentieren

Zu 1. Nacharbeiten einer Versuchsvorschrift / Anleitung nach "Kochrezept"

Was ist das?

- Schrittweises Abarbeiten einer detaillierten Versuchsvorschrift , häufig in Form eines Schülerarbeitsblatts mit detaillierter Versuchsvorschrift

Beispiele:

- Ermittlung der Dichte eines unregelmäßig geformten Gegenstandes
- Beispiel Trennung eines Sand-Salz-Gemisches (Unterricht Chemie Nr. 82/83, S. 42)

Nachteile:

- Für Schüler meist weniger motivierend
- Oft kaum eigene kognitive Aktivität, eigenes Nachdenken kann eher hinderlich sein; es wird oft kein Verständnis entwickelt, wieso manche Geräte eingesetzt werden, warum manche Herangehensweisen besser sind als andere, es findet kein Austesten von Parametern statt.
- Schüler haben häufig Schwierigkeiten Beobachtetes zu erklären; dies hängt aber auch stark von der Aufgabenstellung ab
- Häufig kein Verständnis für den Zusammenhang zwischen der Fragestellung und dem experimentellen Aufbau
- Ein Zusammenhang zwischen Aufstellen, Testen und Reflektieren von Hypothesen und dem Experimentieren wird nicht aktiv hergestellt.
- Schüler erwarten das "Gelingen" als einzig korrektes Versuchsergebnis und erwarten bzw. sehen ihre Aufgabe lediglich in der "richtigen" Versuchsdurchführung.

Wann einzusetzen?

- Dient Erlernen und Einüben chemischer Fachmethoden und Arbeitstechniken wie den Stofftrennverfahren wie Destillation, Chromatographie, ...
- bei komplexem Versuchsaufbau und dem Arbeiten mit teuren Apparaturen (z.B. Destillation) oder
- bei Versuchen mit entspr. Gefährdungspotential
- Anwendung des bisherigen Wissens auf Beobachtungen im Experiment

Wie kann man ein solches Nacharbeiten für die Schüler interessanter bzw. verständlicher?

- → Steigerung der S-Eigenaktivität durch:
 - oz.B. Infotexte, die Schüler zur Erklärung des eben durchgeführten und beobachteten lesen müssen
 - oLückentexte im Rahmen der Erklärung
 - oBildsequenz als Puzzle

Zu 2. Anwendungsorientiertes Arbeiten

Merkmale:

- Wissen und Können müssen in neuen Situationen oder Zusammenhängen aktualisiert und umgesetzt werden
- Wissen und Können müssen dabei weitgehend selbstständig gehandhabt werden
- Durch die Anwendung wird eine direkte oder indirekte Verbindung von Theorie und Praxis hergestellt, d.h. die theoretischen Kenntnisse (Grundwissen, Fertigkeiten oder Fachmethoden) werden auf ein (meist lebensnahes) Beispiel angewandt

a) nach "Kochrezept"

- Kann in Richtung Nacharbeiten gehen, wenn ein lebensnahes Beispiel als Anwendungsbezug gegeben ist, dann aber Vorschrift nachgearbeitet wird um Aufgabe zu lösen
- Beispiel: Dichtebestimmung: Ist die Kette aus echtem Gold?

b) in offener Aufgabenstellung

- lebensnahes Beispiel (Anwendungsbezug) wird gegeben; Vorwissen (Fachwissen, Fachmethoden) muss angewendet werden um Aufgabe zu lösen
- Anleitung muss genau und verständlich sein; Ziel muss Schülern klar sein, der Weg bleibt aber (teilweise hängt vom Kenntnisstand der Schüler ab) offen
- Bindeglied zum problemlösenden Experimentieren
- Auch ermöglicht durch gefahrlos einsetzbares Material wie Medizintechnik, Microscale-Boxen etc.

Beispiele:

→ Experimentelle Aufgabenstellungen wie z.B. "Säure ist des Spitzers Tod", "So eine Sauerei"

Vorteile:

- Kompetenzbereich Erkenntnisgewinnung wird geschult
- Anwendung und Verknüpfung des eigenen chemischen Wissens
- Schulung logischen und problemlösenden Denkens

Zu 3. Problemlösendes Experimentieren

Was ist das?

- Anspruchsvollste Konzeption
- Problemlöser muss den Lösungsweg selbst finden
- Problemlösestrategien stehen in enger Beziehung zum Vorwissen
- Wenn Vorwissen fehlt oder noch keines Vorhanden ist → experimentelles Erkunden oder Klärung durch logisches Denken

Methodenbeispiele:

(A) Experimentelle Aufgabenstellungen

Beispiel: Aus welchem Metall besteht ein Metallspitzer?

(B) Egg-Race und Robinsonade

Was ist das?

(A) Egg-Race

- Wettkampf ist das bestimmende Element
- Erledidung einer bestimmten, offenen Aufgabe in einer Gruppe, in möglichst schneller Zeit, mit möglichst geringem Materialaufwand und möglichst effektivem Ergebnis.
- Eigenschaften: lebensnahe Aufgabenstellung, kreatives Umsetzen von Alltagserfahrungen und Fachwissen, Kooperation in der Gruppe, Eigenständiges Arbeiten
- Im Unterricht: genaue Zeitvorgaben, Experimentiererfahrung ist wichtig

(B) Robinsonade

- ähnlich wie das Egg-Race nur ohne Wettbewerbscharakter
- fiktive Rahmenhandlung steht im Vordergrund → das Tun der Schüler einen Sinn erhält

Was zeichnet die Aufgabenstellung aus?

- Sollte lebensnah und motivierend sein
- Sollte mehrere Lösungsmöglichkeiten zulassen
- Lösung sollte nicht offensichtlich erkennbar sein
- Soll Lernstand der Gruppe angemessen sein

Wann / Wo einsetzbar?

- Eigenen sich nur bedingt zum Lernen neuer Fachmethoden, sondern dienen ehr der Anwendung und Umsetzung von Wissen
- Probleme/Phänomene aus dem Alltag als thematischer Aufhänger→ Lösen des Problems mit Hilfe des bekanntem Wissens → Schulung problemlösenden Denkens
- Im Rahmen des forschend-entwickelnden Unterrichts zum "Nacherfinden" von Arbeitstechniken

Was sollte beachtet werden?

- S sollten selbstständiges Experimentieren in der Gruppe gewohnt sein
- Regeln vorher erstellen
- Gruppeneinteilung beachten: nicht nur beste Schüler in einer Gruppe und in anderer schlechteste
- Möglichkeit des Einsetzens von Hilfekärtchen für schwächere Schüler
- Vorab mögliche Gefährdungen ausschalten: z.B. durch Aufgaben und Materialstellung; oder durch Aufforderung zu einem best. Zeitpunkt mit dem Lehrer Rücksprache zu halten

Beispiele:

- Wer hilft dem Verdurstenden?
- Dr. Schmeck Gewinnung von reinem Alkohol aus Wein
- Wie viel Gas entsteht aus einer Brausetablette
- Chemischer Feuerlöscher

→ Vorteile:

- Förderung von Motivation, Kreativität und logischem Denken
- Erhöhung der Interaktion und Kooperation zwischen Schülern → Förderung der Teamfähigkeit; S müssen sich auch mit Ideen der anderen Gruppenmitglieder auseinandersetzen
- Positive Erlebnisse erleichtern Zugang zu naturwissenschaftlichen Phänomenen
- Schüler müssen sich selber darüber klar werden, welche Hypothese geprüft werden soll und welche Ursache-Wirkungs-Annahme ihren Überlegungen zu Grunde liegt

Weitere Unterrichtsmetoden:

- Lernzirkel z.B. für Stofftrennungen (Akademiebericht "Offene Lernformen im Chemieunterricht")
- Lernfirma → z.B. Dr. Schmeck (Ingo Eilcks)

Quellen:

- Pfeifer, Schaffer, Sommer: Schülerexperimente im Unterricht in: Naturwissenschaften im Unterricht Chemie, Heft 126, Friedrich-Verlag, S. 2 ff
- Schaffer, Pfeifer: Ziele von Schülerexperimenten in: Naturwissenschaften im Unterricht Chemie, Heft 126, Friedrich-Verlag, S. 10ff
- Wißner, O.: Das Öffnen von Aufgaben in: Naturwissenschaften im Unterricht Chemie, Heft 82/82, Friedrich-Verlag, S. 42ff
- David, Fuccia: Schülerexperimente im Chemieunterricht in: Experimentelle Aufgabenstellungen im Chemieunterricht, Akademiebericht Nr. 434, 2008, S. 39 ff
- Witteck, Eilks: Offenes Experimentieren und kooperatives Lernen in der Lernfirma ein Beispeil zur Stofftrennung für den Chemieanfangsunterricht in: Experimentelle Aufgabenstellungen im Chemieunterricht, Akademiebericht Nr. 434, 2008, S. 59 ff
- http://www.standardsicherung.schulministerium.nrw.de/materialdatenbank/nutzersicht/materialeint rag.php?matId=2462
- Gärtner, Scharf: Chemische Egg-Races in Theorie und Praxis, Onlineausgabe 2001
- Von Borstel; Böhm: Eine Aufgabe viele Lösungswege: "Egg Races im Chemieunterricht"