Formeln in CASSY Lab 2

Formeln sind ein mächtiges Werkzeug beim Arbeiten mit CASSY Lab 2. Schon während einer Messung können Messdaten simultan in zusammengesetzte Größen umgerechnet werden. Dazu stehen mathematische Funktionen und Operatoren zur Verfügung.

Hintergrund

Um das Arbeiten mit Formeln zu lernen, soll die Temperatur, die in Grad Celcius erfasst wird, in Kelvin umgerechnet werden.

Materialien

C Ir N

Computer mit CASSY Lab 2 Interface der CASSY - Familie, z.B. Pocket-CASSY oder Mobile-CASSY 2 NiCr-Ni Adapter S (nicht nötig bei Mobile-CASSY 2) Temperaturfühler NiCr-Ni 3mm

Durchführung

Unter Einstellungen/Rechner/Formel/neu wird das Einstellungsfenster für Formel aufgerufen (Abb. 1):

Formel						
Neu		Löschen				
Name:	Neue Größ	3e	Symb	ol: f_1	Einheit:	
von:	0	bis:	100	D	ezimalen:	1
f1(date,time,n,t,&J,f1) =						
0						-
Hilfe						

Abb. 1: Formel-Fenster, neu aufgerufen

Formel									
	Neu		[Lö	schen				
Name:	Tempe	ratur		Symb	ool: T		Einheit:	К	
von:	0	к	bis:	400	к	De	zimalen:	1	
T(date,time,n,t,&J,T) =									
&J+273,15									
Hilfe									

Abb. 2: Formel-Fenster, ausgefüllt

Das Einstellungsfenster wird entsprechend der Abb. 2 ausgefüllt, hat man Schwierigkeiten, das Symbol für die Temperatur & J einzugeben, kann man das Flyout-Menü benutzen (auf das Dreieck, dann auf Variable klicken und zuletzt auf die Temperatur klicken).

Über das Flyout-Menü stehen neben den Variablen noch Funktionen und Operatoren zur Verfügung.

Die Formel muss nach der Eingabe mit *Enter* bestätigt werden. Sofort erscheint ein neuer Kanalbutton in der Befehlzeile, hier das *T* mit einem Punkt rechts oben:

Will man das Formel-Einstellungsfenster aufrufen, reicht ein Rechts-Klick mit der Maus auf den Kanalbutton. Gleichzeitig sieht man die Formel im Einstellungsfenster unter *Formel* eingerückt aufgeführt:

- Rechner	
Parameter	
- Formel	
Temperatur <i>T</i> = <i>&</i> +273,15	
···· Zeitliche Ableitung	

In den Versuchsanleitungen wird unter **Rechner/Formel** die Formel angegeben, vor die Formel wird noch die Bezeichnung (*Neu Größe*) angegeben. Zusätzlich werden noch **Messparameter** angegeben, die für diesen Versuch notwendig sind.

ahma: auto	
anne. auto	omatisch
szeit	
vall 1 s	
	szeit vall 1 s

Werden die Einstellungen für den eigenen Versuch übernommen, müssen die Bezeichnungen für die Variablen angepasst werden. Je nach verwendetem CASSY-interface können die Temperturkanäle unterschiedliche Bezeichnungen haben, z.B. & J, & JA11 oder & JB12.

Ergebnis:

Wird über den Kanalbutton das Anzeigefenster für die Temperaturanzeige in Kelvin aufgerufen, werden in zwei Anzeigefenstern die Temperatur in Grad Celcius und in Kelvin nebeneinander angezeigt:

Weitere Anwendungen in der Chemie

Anpassen von Geräten über den Schreiberausgang nach Lit. 1

Viele alte Geräte haben einen Schreiberausgang, wo eine ausgegeben Spannung mit einem bestimmten Messwert korreliert. Falls solche Geräte vorhanden sind, können Sie für die Messwerterfassung mit CASSY genutzt werden:

Spannung	Bereich:	-1 V 1 V
Rechner/Formel	Neu	Temperatur: U1*100
Messbedingungen	Aufnahme:	automatisch
	Messzeit:	kein Eintrag (Messzeit unbestimmt)
	Intervall:	1 s
Kurve	Stil:	Linien

In diesem Fall entspricht 1 mv = 0,1 °C , die Temperatur wird dann auf eine Stelle genau hinter dem Komma angezeigt.

Kann man am Gerät verschiedene Messbereiche einstellen, muss dies berücksichtigt werden.

Zählwaage: Duplosteine zählen (Masse eines Duplosteines 12 g) nach Lit. 2

Wenn man die Gesamtmasse von mehreren Duplosteinen durch die Masse eines Duplosteines teilt, erhält man die Stückzahl der Duplosteine.

Rechner/Formel	Neu	m/12 (Stückzahl)
Messparameter	Aufnahme:	Manuel

Analog funktioniert die Molwaage. Um die Stoffmenge zu bestimmen wird die Masse durch die jeweilige Molare Masse des Stoffes geteilt.

Für das Verständnis des Molbegriffs ist diese Technik sehr hilfreich, vor allem wenn man mit dem Zählen der sichtbaren Duplosteine beginnt und dann auf das Zählen von Teilchen auf atomarer Ebene übergeht.

Titration: Zugegebenes Flüssigkeitsvolumen bestimmen nach Lit. 3

Für das Volumen gibt es keinen direkten Sensor, daher kann man mithilfe einer Bürette, einer Formel und mit manueller Messung eine Titration durchführen. In diese Beispiel wird immer nach 0,5 ml eine Messung aufgenommen.

Rechner/Formel	Neu	0,5*n-0,5 (Volumen)
Messbedingungen	Aufnahme:	manuell
Kurve	Stil:	Linien

Titration: Erste Ableitung zur Bestimmung des Umschlagpunktes

Die Bestimmung des Umschlagpunktes bei einer Titration wird über das Auswertemenü, das über Rechtklick auf das Messdiagramm zur Verfügung steht, bestimmt. Dies ist allerdings nur eine Black-Box-Methode.

Mit Hilfe einer Formel kann die maximale Steigung der Titrationskurve berechnet werden, dazu muss man die erste Ableitung erstellen.

Messnarameter Aufnahme	automatisch
Messzeit	
Intervall	1 s
Kurve Stil:	Linien

Gasvolumenbestimmung nach Lit. 4

Mithilfe eines Drehbewegungssensors wird die Stellung des Kolbens in einem Kolbenprober bestimmt und damit das Volumen, das sich im Kolbenprober befindet, bestimmt.

Genauere Angaben finden sich in Lit. 4

Count-Down: Ziffernfolge läuft von 10 auf Null herunter nach Lit. 5

Wenn etwas Showchemie im Unterricht einzug halten soll, ist ein Count-down eine gute Methode.

Rechner/Formel	Neu	Count-down (11-n)*(n<11)
Messparameter	Aufnahme:	automatisch
	Messzeit	
	Intervall	1 s
Kurve	Stil:	Linien

Der Count-down wird mit F4 zurückgesetzt (Anzeigefenster *Count-down t = 10*), dann mit F9 gestartet.

Bei Null kann dann über die Spannungsquelle oder das Relais im Sensor-CASSY 2 ein Ereignis ausgelöst werden (z. B. Lit. 6).

Stoppuhr nach Lit. 7

CASSY-Lab 2 kann auch ohne Sensorboxen (wie z.B. Lichtschranken) als Stoppuhr verwendet werden. Dazu wird wieder eine Formel eingesetzt.

Rechner/Formel	Neu	Stoppuhr $t + (t=0)*t[n-1]$
Messparameter	Aufnahme:	automatisch
	Messzeit	
	Intervall	100 ms
Kurve	Stil:	Linien

Soll auf 0,1 Sekunden genau gestoppt werden, muss beim *Intervall 100 ms* eingegeben werden, es kann aber auch auf zwei Stellen hinter dem Komma gemessen werden (*Zeitintervall 10 ms*).

Im Prinzip kann die Stoppuhr auch mit einem Ereignis über einen Trigger ausgelöst werden und über ein anderes Ergeignis beendet weden, z.B. über eine Stoppbedingung.

Literatur

- (1) https://www.fachreferent-chemie.de/wp-content/uploads/Anpassen-von-Ger%C3%A4ten.pdf
- (2) https://www.fachreferent-chemie.de/wp-content/uploads/Z%c3%a4hl_Molwaage.pdf
- (3) https://www.fachreferent-chemie.de/wp-content/uploads/S%C3%A4ure_Base_Titration.pdf
- (4) https://www.fachreferent-chemie.de/wp-content/uploads/Gasvolumenmessung_Neu.pdf
- (5) https://www.fachreferent-chemie.de/wp-content/uploads/Count-Down.pdf
- (6) https://www.fachreferent-chemie.de/wp-content/uploads/Eine-Kugel-f%c3%a4llt.pdf
- (7) https://www.fachreferent-chemie.de/wp-content/uploads/Stoppuhr.pdf